

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [source] [https://github.com/waukeras-rl2/blob/master/rl/core.py#L11]

Agent

rl.core.Agent(processor=None)

Abstract base class for all implemented agents.

Each agent interacts with the environment (as defined by the Env class) by first observing the
state of the environment. Based on this observation the agent changes the environment by performing
an action.

Do not use this abstract base class directly but instead use one of the concrete agents implemented.
Each agent realizes a reinforcement learning algorithm. Since all agents conform to the same
interface, you can use them interchangeably.

To implement your own agent, you have to implement the following methods:

	forward

	backward

	compile

	load_weights

	save_weights

	layers

Arguments

	processor (Processor instance): See Processor for details.

[source] [https://github.com/wau/keras-rl2/blob/master/rl/core.py#L454]

Processor

rl.core.Processor()

Abstract base class for implementing processors.

A processor acts as a coupling mechanism between an Agent and its Env. This can
be necessary if your agent has different requirements with respect to the form of the
observations, actions, and rewards of the environment. By implementing a custom processor,
you can effectively translate between the two without having to change the underlaying
implementation of the agent or environment.

Do not use this abstract base class directly but instead use one of the concrete implementations
or write your own.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L533]

Env

rl.core.Env()

The abstract environment class that is used by all agents. This class has the exact
same API that OpenAI Gym uses so that integrating with it is trivial. In contrast to the
OpenAI Gym implementation, this class only defines the abstract methods without any actual
implementation.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L609]

Space

rl.core.Space()

Abstract model for a space that is used for the state and action spaces. This class has the
exact same API that OpenAI Gym uses so that integrating with it is trivial.

 [source] [https://github.com/wau/keras-rl2/blob/master/rl/processors.py#L7]

MultiInputProcessor

rl.processors.MultiInputProcessor(nb_inputs)

Converts observations from an environment with multiple observations for use in a neural network
policy.

In some cases, you have environments that return multiple different observations per timestep
(in a robotics context, for example, a camera may be used to view the scene and a joint encoder may
be used to report the angles for each joint). Usually, this can be handled by a policy that has
multiple inputs, one for each modality. However, observations are returned by the environment
in the form of a tuple [(modality1_t, modality2_t, ..., modalityn_t) for t in T] but the neural network
expects them in per-modality batches like so: [[modality1_1, ..., modality1_T], ..., [[modalityn_1, ..., modalityn_T]].
This processor converts observations appropriate for this use case.

Arguments

	nb_inputs (integer): The number of inputs, that is different modalities, to be used.
Your neural network that you use for the policy must have a corresponding number of
inputs.

[source] [https://github.com/wau/keras-rl2/blob/master/rl/processors.py#L40]

WhiteningNormalizerProcessor

rl.processors.WhiteningNormalizerProcessor()

Normalizes the observations to have zero mean and standard deviation of one,
i.e. it applies whitening to the inputs.

This typically helps significantly with learning, especially if different dimensions are
on different scales. However, it complicates training in the sense that you will have to store
these weights alongside the policy if you intend to load it later. It is the responsibility of
the user to do so.

Introduction

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/agents/cem.py#L12]

CEMAgent

rl.agents.cem.CEMAgent(model, nb_actions, memory, batch_size=50, nb_steps_warmup=1000, train_interval=50, elite_frac=0.05, memory_interval=1, theta_init=None, noise_decay_const=0.0, noise_ampl=0.0)

Write me

References

	Learning Tetris Using the Noisy Cross-Entropy Method [http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.12.2936?journalCode=neco], Szita et al., 2006

	Deep Reinforcement Learning (MLSS lecture notes) [http://learning.mpi-sws.org/mlss2016/slides/2016-MLSS-RL.pdf], Schulman, 2016

Introduction

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/agents/ddpg.py#L22]

DDPGAgent

rl.agents.ddpg.DDPGAgent(nb_actions, actor, critic, critic_action_input, memory, gamma=0.99, batch_size=32, nb_steps_warmup_critic=1000, nb_steps_warmup_actor=1000, train_interval=1, memory_interval=1, delta_range=None, delta_clip=inf, random_process=None, custom_model_objects={}, target_model_update=0.001)

Write me

References

	Continuous control with deep reinforcement learning [https://arxiv.org/abs/1509.02971], Lillicrap et al., 2015

Introduction

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/agents/dqn.py#L89]

DQNAgent

rl.agents.dqn.DQNAgent(model, policy=None, test_policy=None, enable_double_dqn=True, enable_dueling_network=False, dueling_type='avg')

Write me

References

	Playing Atari with Deep Reinforcement Learning [https://arxiv.org/abs/1312.5602], Mnih et al., 2013

	Human-level control through deep reinforcement learning [http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html], Mnih et al., 2015

	Deep Reinforcement Learning with Double Q-learning [http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications_files/doubledqn.pdf], van Hasselt et al., 2015

	Dueling Network Architectures for Deep Reinforcement Learning [https://arxiv.org/abs/1511.06581], Wang et al., 2016

Introduction

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/agents/dqn.py#L548]

NAFAgent

rl.agents.dqn.NAFAgent(V_model, L_model, mu_model, random_process=None, covariance_mode='full')

Write me

References

	Continuous Deep Q-Learning with Model-based Acceleration [https://arxiv.org/abs/1603.00748], Gu et al., 2016

Available Agents

Name	Implementation	Observation Space	Action Space
———————-	————————	——————-	—————
DQN	rl.agents.DQNAgent	discrete or continuous	discrete
DDPG	rl.agents.DDPGAgent	discrete or continuous	continuous
NAF	rl.agents.NAFAgent	discrete or continuous	continuous
CEM	rl.agents.CEMAgent	discrete or continuous	discrete
SARSA	rl.agents.SARSAAgent	discrete or continuous	discrete

Common API

All agents share a common API. This allows you to easily switch between different agents.
That being said, keep in mind that some agents make assumptions regarding the action space, i.e. assume discrete
or continuous actions.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L44]

fit

fit(self, env, nb_steps, action_repetition=1, callbacks=None, verbose=1, visualize=False, nb_max_start_steps=0, start_step_policy=None, log_interval=10000, nb_max_episode_steps=None)

Trains the agent on the given environment.

Arguments

	env: (Env instance): Environment that the agent interacts with. See Env for details.

	nb_steps (integer): Number of training steps to be performed.

	action_repetition (integer): Number of times the agent repeats the same action without
observing the environment again. Setting this to a value > 1 can be useful
if a single action only has a very small effect on the environment.

	callbacks (list of keras.callbacks.Callback or rl.callbacks.Callback instances):
List of callbacks to apply during training. See callbacks for details.

	verbose (integer): 0 for no logging, 1 for interval logging (compare log_interval), 2 for episode logging

	visualize (boolean): If True, the environment is visualized during training. However,
this is likely going to slow down training significantly and is thus intended to be
a debugging instrument.

	nb_max_start_steps (integer): Number of maximum steps that the agent performs at the beginning
of each episode using start_step_policy. Notice that this is an upper limit since
the exact number of steps to be performed is sampled uniformly from [0, max_start_steps]
at the beginning of each episode.

	start_step_policy (lambda observation: action): The policy
to follow if nb_max_start_steps > 0. If set to None, a random action is performed.

	log_interval (integer): If verbose = 1, the number of steps that are considered to be an interval.

	nb_max_episode_steps (integer): Number of steps per episode that the agent performs before
automatically resetting the environment. Set to None if each episode should run
(potentially indefinitely) until the environment signals a terminal state.

Returns

A keras.callbacks.History instance that recorded the entire training process.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L231]

test

test(self, env, nb_episodes=1, action_repetition=1, callbacks=None, visualize=True, nb_max_episode_steps=None, nb_max_start_steps=0, start_step_policy=None, verbose=1)

Callback that is called before training begins.”

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L391]

compile

compile(self, optimizer, metrics=[])

Compiles an agent and the underlaying models to be used for training and testing.

Arguments

	optimizer (keras.optimizers.Optimizer instance): The optimizer to be used during training.

	metrics (list of functions lambda y_true, y_pred: metric): The metrics to run during training.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L39]

get_config

get_config(self)

Configuration of the agent for serialization.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L364]

reset_states

reset_states(self)

Resets all internally kept states after an episode is completed.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L400]

load_weights

load_weights(self, filepath)

Loads the weights of an agent from an HDF5 file.

Arguments

	filepath (str): The path to the HDF5 file.

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/core.py#L408]

save_weights

save_weights(self, filepath, overwrite=False)

Saves the weights of an agent as an HDF5 file.

Arguments

	filepath (str): The path to where the weights should be saved.

	overwrite (boolean): If False and filepath already exists, raises an error.

Introduction

[source] [https://github.com/keras-rl/keras-rl/blob/master/rl/agents/sarsa.py#L17]

SARSAAgent

rl.agents.sarsa.SARSAAgent(model, nb_actions, policy=None, test_policy=None, gamma=0.99, nb_steps_warmup=10, train_interval=1, delta_clip=inf)

Write me

References

	Reinforcement learning: An introduction [http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf], Sutton and Barto, 2011

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

